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Abstract—Walkers increase the ability to walk independently
and safely but can - when used incorrectly - lead to dangerous
situations and injuries. Therefore, it is important that during
the rehabilitation injured and/or elderly people learn how to
walk with a walker. Currently, patients are dependent of their
healthcare professionals to assist them and correct their gait
pattern if needed, which limits them in when and where they
can train walking. In view of this problem, a smart walker was
designed which assists the patient by monitoring feet placement
and alerting when incorrect usage is detected. In this way, the
patient can train independently. This work describes the design
of the smart walker, consisting out of a depth camera, RGB
cameras and ultrasonic sensors. These sensors serve as input for
a computer model which returns audiovisual feedback to the
user.

Index Terms—rehabilitation, walker, AI, single board com-
puter, image processing

I. INTRODUCTION

As healthcare has improved in recent years, more people are
surviving after injury or disease. This also results into more
patients who need to rehabilitate. However, the number of
healthcare professionals has not increased proportionally [1],
although personal contact between physiotherapists and their
patients is necessary to facilitate healing during clinical re-
habilitation. Smart devices and the application of artificial
intelligence (AI) may enable patients to perform the necessary
rehabilitation exercises outside therapy time, i.e. without the
healthcare professional.

In this context, a smart walker for use in clinical rehabilita-
tion was designed. During rehabilitation from certain diseases
or from surgery, walkers serve as an important walking aid [2]–
[5]. The goal is to develop a device which is tailored to the
needs of the healthcare professionals and patients, enabling
the patient to train independently while important parameters
- which are indicated by the therapist - are monitored. It was
shown [6], [7] that adding smart technologies to a walker
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Fig. 1. Foot placement - Walking too far behind the walker. Recommended
usage (left) and incorrect usage (right) where an audiovisual alert is given.

can not only improve the quality of life for the patient, but
also prevent harmful falls. For example, sensors can detect
leg positions and gait events [8], [9] and a strain gauge-
based instrumentation system can address the changes in upper
extremity kinetics that occur with the use of a walker [10].
Also robotic walkers are tested with standing and walking
assistance function [11].

One of the main indicators of recommended usage of a
walker is the foot placement of the user with respect to the
walker, which serves as the main detection objective of the
device. The walker can be used by each patient without the
need of a healthcare professional to apply on-body sensors on
the feet or legs. An important parameter is the cost of the total
system, which will be optimized by the use of low-cost smart
devices and developing custom AI models.

This paper describes the first version of the smart walker
- which will be used for data-acquisition, AI-model develop-
ment and pilot tests with a test group of patients - including
the detection features, sensors, feedback options and initial
vision models. The data and user experiences gathered by
this initial version will be used in the following iterations to
determine the final design of the walker, optimizing sensors
and AI-models for low-cost smart devices, reducing cost and
improving usability.



Fig. 2. Foot placement - Walking out of center. Recommended usage (left)
and incorrect usage (right) where an audiovisual alert is given.

II. SMART FEATURES OBJECTIVES

The goal of our prototype is enabling patients to train
independently; e.g., the smart walker can teach patients to
train a recommended gait pattern, based on the feedback of the
device. In order to determine which parameters to prioritize,
a panel of professionals in rehabilitation was consulted and
a set of features was determined for the smart walker. The
following sections give an overview of parameters which our
developed smart walker can detect.

A. Foot placement - Walking too far behind the walker

The center of gravity should be between the wheels and
support legs of the walker. If the patient walks behind the
walker, the center of gravity will shift behind the back support
legs and the risk of the walker sliding away is increased,
resulting in a possible fall of the patient.

Two zones relative to the back support legs are created: a
target zone, and a non-target zone (Figure 1). When walking,
the patient should always place the moving foot in the target
zone. If this is not the case, the patient is walking behind the
walker and will be notified by an audiovisual signal.

B. Foot placement - Walking out of center

A common error by patients when taking turns is walking
besides the walker. This results in uneven forces on the walker
handles. As a result, the walker can rotate or slip away, again
resulting in a possible fall of the patient.

Three zones relative to the center of the walker are created:
a center target zone, and a non-target zone at each outer side
of the walker (Figure 2). The feet of the patient should be in
the target zone at all times. If not, the smart walker will detect
this and notify the patient.

C. Foot placement - Crossing feet a.k.a. catwalk

When the user crosses his/her feet when walking - such
as on a catwalk - the joints of the user are submitted to
extra forces, possibly leading to new injuries. Furthermore this
results in bad stability due to the feet being on one line instead
of at shoulder width apart.

Two zones relative to the center of the walker are created: a
left zone and a right zone (Figure 3). The left/right foot should

Fig. 3. Foot placement - Catwalk. Recommended usage (left) and incorrect
usage (right) where an audiovisual alert is given.

always be in the corresponding zone. If not, the patient will
be notified.

D. Other useful detections

The panel of professionals in clinical rehabilitation listed
other useful detections, i.e.:

• The detection of step frequency, step length and foot roll.
• Fall detection.
• Left/right pressure distribution on the handles.

These detections were not considered in the first prototype of
our smart walker.

III. SYSTEM SETUP

The current version of the smart walker is a first prototype
version. It will be used for practice tests at rehabilitation
centers with patients and healthcare professionals. From the
feedback of these actors, further iteration models will be
developed. This section describes the hardware setup of the
current model. Figure 4 gives a schematic overview of the
components of the system and their connections.

The central core of the smart walker is a single board
computer (type: Jetson Nano) for the data-acquisition and
processing. A touchmonitor (Waveshare 13.3 inch HDMI LCD
Display) is used as User Interface and provides audiovisual
feedback to the user. Power is delivered by a Litionite Tanker
90 W / 50000 mAh Powerbank, which allows for multi hour
testing. A DC-DC step down voltage regulator (12 V - 5 V)
is used as voltage regulator.

Two ultrasonic sensors HC-SR04 are applied to estimate
distance. Two Neopix LED sticks provides visual feedback
to the patient. The ultrasonic sensors and LED sticks are
controlled by an Arduino Uno microcontroller.

An (expensive) depth camera D435i and two (cheap) Rasp-
berry Pi Camera V2 are applied as input devices to monitor the
foot placements. The purpose of the depth camera is to acquire
high-quality data to train AI-models which then can run on
the cheaper camera module. Further experimental testing will
determine whether or not the depth camera is necessary in
practice environments.

The cameras can be mounted at two different positions on
the walker:



Fig. 4. Smart walker: system topology and connections of the hardware components.

Fig. 5. Bird’s-eye view configuration.

Fig. 6. Worm’s-eye view configuration.

• Bird’s-eye configuration: a top-down view on the feet of
the patient and the back legs of the walker (Figure 5).

• Worm’s-eye configuration: a bottom-up view on the feet
and legs of the patient (Figure 6).

The user interface (UI) ties the different program modes
together and enables easy data-acquisition and testing of the
software. Table I gives an overview of the UI control options.

Fig. 7. Calibration pipeline of the walker depth profile.

IV. DETECTION METHODS

One of the main challenges of the smart walker is the
development of a model which can detect the position of the
feet relative to the walker and -moreover- is performant enough
to run on the limited resources of a single board computer.
We now describe three different possible approaches: depth
calibration, a Pix2Pix model and a Tiny YoloV4 model.

A. Foot detection using depth calibration

This method uses the depth image from the D435i camera
and consists out of 2 main steps:

1) Calibration of the walker depth profile: At the start of
the program, a number of frames will be taken to create
a depth profile of the walker (Figure 7). At this stage
no feet or other objects may be present in the field of
view of the depth camera.

2) Foot detection: After calibration, each depth frame is
subtracted with the depth profile of the walker. The
resulting frame represents the objects not present dur-
ing calibration (Figure 8). Two threshold functions are
applied to this frame: one removes the pixels which
only differ by a couple of millimeter in order to reduce
noise; the other one removes the pixels which are further
away than the region of interest. A contour detection -



TABLE I
USER INTERFACE CONTROL OPTIONS

Depth camera D435i: Commands:
Activate: Activate the camera Save: Save the current configuration
Display stream: Display the RGB camera stream Save & Launch: Save the current configuration and launch the application
Display depth: Display the depth camera stream Update: Update the settings while the application is running
Analyse: Run the detection model on the D435i data Stop: Stop the application without closing the UI

and augment the RGB camera stream Quit: Stop the application and close the UI
Display FPS: Display the frames-per-second on the camera streams Upload: Upload the recorded files to the cloud
Display line: Draw a fixed line on the camera streams Clean: Remove uploaded files

which can be used as a target for the patient to step over Move: Move recorded files to an external USB drive
Archive: Save the D435i streams in a bag-file
Ultrasonic sensors: Raspberry Pi cameras:
Activate: Enable the ultrasonic sensors Activate: Activate the Raspberry Pi cameras
Display: Display the ultrasonic measurements in a separate UI Archive: Save the Raspberry Pi camera streams in mp4-files
Archive: Save the measurements in a csv-file
Metronome: Audio-Feedback:
Activate: Enable the metronome with the desired beats per minute Activate: Enable audio feedback
LED-Feedback:
Activate: Enable visual feedback with Neopix

Fig. 8. Foot detection pipeline using the depth camera.

excluding contours which are too small to be a foot -
extracts the feet from this image and the bounding box.
From the resulting bounding box, the tip of the shoe or
foot is determined and compared with the target zone.

B. Foot detection using Pix2Pix model

It is possible to extract the feet with only the RGB camera.
The first approach is by using a Pix2Pix GAN model [12]
which returns a feet-mask of the input image. The training
dataset is automatically generated by the foot detection model
using depth calibration. This method enables fast and easy
(re-)generating of datasets (Figure 9).

The output of the model can be used to detect the contours
and their bounding boxes in order to find the position of the
feet. The resulting model works good on a standard desktop
but is - with its size of 200 MB - not suitable for a single
board computer such as the Jetson Nano (Figure 10).

Fig. 9. Training image using a Pix2Pix GAN model, generated from depth
calibration model.

Fig. 10. Output feet detection image from the Pix2Pix model with post
processing.

C. Foot detection using Tiny YoloV4 model

Given the limited capabilities of single board computers,
a more suitable model for finding the position of the feet is
an object detection and positioning model such as the YOLO
network [13]. This network bypasses the feet-mask step and
directly gives the position and bounding box of each detected
foot (Figure 11). The training dataset can be autogenerated
from the foot detection model using the Pix2Pix model or/and
depth calibration.

A trained Tiny YoloV4 model converted to tensorflow-lite



Fig. 11. Output feet detection image from the YoloV4 Tiny model.

has a size of 20 MB. Further improvements can be made by
converting the data to a tensorRT model optimized for running
on e.g., a Jetson Nano. For comparison, the benchmark for a
Tiny YoloV3 model on a Jetson Nano with tensorRT is 25 fps
[14], which is sufficient for the smart walker.

V. CONCLUSION

A first prototype version of a smart walker for clinical
rehabilitation was developed. The walker detects foot place-
ment, i.e. walking too far behind the walker, out of center, or
crossing feet. The different detection models show that there
are multiple options to detect the position of the feet with
the equipped sensors on the smart walker. By applying further
model optimization - choice of model and building for specific
hardware - these models can run on the constraint hardware of
the walker. The foot detection using depth calibration shows
how depth data can be used to automatically generate datasets
for vision models which only use the RGB image, possibly
making the depth camera unnecessary in further iterations
of the walker and thus reducing cost and the number of
components.
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